埼玉大学脳科学融合研究センターのシンポジウム「脳の未知に挑む技術」に行ってきました。
先生方は、自分の研究分野と脳科学を繋げようと頑張っているな、という印象だった。
簡単にまとめる。
トップバッターは、大倉先生「in vivo脳での神経回路活動の理解を目指した新技術研究開発」
神経細胞の、Ca2+の濃度変化に応じて、GFPの分子構造を変えて、濃度が高いときに光る、というような分子(タンパク質)を作り出した、という話。
これはもちろん、遺伝子に入れてあるのだが、それは発現する場所、時間を任意にコントロールしたいためである。
実際に、高濃度(100μM)のグルタミン酸に対する応答として、spineのカルシウムイオン濃度変化を観察した、ということであった。
二番目は、化学科の中林先生「塩水の中で動くいい加減だが堅牢な電気化学回路」
という話で、
非線形振動子の話は、まあちょっとわからなかったので割愛するとして、腎臓の腎孟(じんもう)という器官では、尿を濾すためにポンプ運動をしている。この器官の上流を潰すことによっても、このポンプ運動をつづける。ただし、その周期は長くなっているという。そこで、腎孟のモデルをつくり、このポンプ運動を再現しよう、という話であった。
ポンプ運動の周期を、細胞の固有振動数を変えずに、変えることができる、という二つの例が示され、後者の細胞数の変化によるモデルが現実系に近いのでは、という検討がなされていた。
三番目は、若狭先生による、「MFEプローブによるナノ反応場解析」
生物が(地球)磁場を感じる仕組みについてで、European Robbinsやウミガメの観測、実験をもとに、磁場センシティブな生物とそのラジカル対を用いた仕組みを話された。
よくわからなかったので、もう一回ゆっくり聞きたい。
たぶん、キィワードは「ケージ場」
四番目は、高柳先生の、「プロトン移動反応の量子シミュレーション」
古典的にはプロトン移動は「玉突き」のような現象といて理解されるが、分子の小さなクラスタについては、量子的に考える必要がある、ということが示され、100Kにおける量子化学的シミュレーションと300Kにおける古典的シミュレーションの熱、量子ゆらぎがほぼ同じ様なものになっている、ということが例示された。
また、水和した硫化水素について、同じ温度での古典と量子シミュレーションが比べられ、古典における水の相がどちらかというと固体にちかく、量子においては液体に近い(クラスタだから、そこまで相について言えるとは思わないけど)ということが言われた。先生によれば、量子論では、相転移が起きやすいということだった。
高柳先生の話で重要だったのはたぶん、「核の量子性」で、それゆえに分子動力学法がちょっと信用ならないもの、という話をしていた。
次に講演されたのは、綿貫先生で、「脳と機械をつなぐブレイン・マシン・インターフェイス技術の開発」
これは、川口の鋳鉄の技術を伝えるのに、拡張現実や、それと、入力に対して応答するある形のもの(インタフェイス:たとえばクレーンのリモコン(に似た何か)であり、また「鋳鉄の時に使う蓋」の取っ手だったり)を用いてみた、というものだった。
人と脳をつなぐのには、まず人の脳の活動を調べることが重要だが、そのために、脳の血流を測定する機械が必要で、名前は忘れた(←!)ものの、表層の活動部位が非侵襲的にわかるということが利点である。
この技術を用いて、現実を、初心者に使いやすい形で補助していく、ということが行われている、という話だった。
他にも、感性の話とかあったけど、割愛された、と思う。
埼玉大の先生で最後に講演されたのは、西垣先生で、「分子細胞ネットワークを知るための4次元発現パターン解析法の開発」
脳は、ネットワークが何らかの機序によって発生し、保存されることによって動いている。
このワイヤリング・パタンを探るために、脳のネットワークがどうなっているのか知ろうというもので、まあ、この研究室で昔から開発してきたマイクロアレイやペプチドアプタマーの開発技術を使って、発生から追っていこう、というもの。
しかし、これはやはり、細かいブロックを作って確かめようというもので、生体ではできないようだ。
そこで、西垣先生は、まあ、シンクロ的に学習する系を作って、それで時間的変化を追おうという話だったが…それはどうかな…
後半は、また明日。
0 件のコメント:
コメントを投稿